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ABSTRACT

Some electronic properties of GaAs-AlAs heterojunctions
and of metal-semiconductor junctions are presented in this
Report. a

GaAs-AlAs heterojunctions have been analyzed by means
of a selfconsistent localized scheme, based on a Wannier
function approach. Finite superlattices for (100) and (111)
directions have been considered, and their structural
properties have also been discussed. Our results show small
ionic relaxations at the (100)-interfaces, and no appreciable
relaxation at the (1ll)-heterojunction. The electronic
selfconsistent calculation gives a small transfer of charge
from AlAs to GaAs, so that a potential barrier between both
semiconductors appears. By calculating this barrier, we have
obtained the energy difference between the top of both
semiconductor valence bands, and found good agreement with
the experimental -evidence.

Abrupt metal-semiconductor junctions have been analyzed
by a selfconsistent tight-binding calculation. Realistic
results for the junction have been obtained in a (111)-Si-Ag
interface. General junctions for Si have been discussed
within the same context, and we have shown that: (i) the
barrier height increases with the strength of the metal-
semiconductor coupling; (ii) the barrier height is
essentially determined by the coupling between the
semiconductor and the fast metal layer.

Etched metal~semiconductor junctions have been analyzed
in a similar way. We present a realistic calculation of a
Si-H~Ag junction. More general cases for Si have been
explored by changing the parameters of the interface. Our
results show: (i) The barrier height presents small changes
(of up to 0.2 eV) depending on the ad-atom electronegativities.
For ad-atoms of low (high) electronegativity, we find higher
(smaller) barrier heights. (ii) The barrier height has been




found to be practically determined by the coupling between
the semiconductor and the ad-atom interlayer.

Finally, non-abrupt III-V semiconductor-metal
junctions have been analyzed and shown to interdiffuse as
a function of the metal-semiconductor heat of reaction and
0f the heat of reaction fon the semiconductonr.

ii




CHAPTER I. HETEROJUNCTIONS

I.1. INTRODUCTION

Semiconductor-semiconductor junctions have become an
important subject with many potential applications. Cur work
on this topic has been concentrated in the analysis of
GaAs-AlAs superlattices (SL).

In the last few years much progress has been made in
the technology of artificial crystals constituted by periodic
layers of two semiconductors. These superlattices show, under
certain conditions, very interesting properties such as
extremely high carrier mobility {(Hess and Holonyak Jr. 1981)
or negative differential resistance (Esaki and Chang 1974).

A SL which has received a great deal of attention is GaAs-
Aleal—x as grown by molecular-beam-epitaxy. Several
experimental techniques (Dingle et al.1974, 1975, Manuel et
al.1976, Sai-Halasz et al.1978, van der Ziel and Gossard 1978,
Barker et al.1978, Merlin et al.1980, Colvard et al.1980,
Holonyak Jr. et al.1980, 1981, Weisbuch et al.1981a, 1981b,
Gormik et al.1981, Piczuk et al.198la, 1981b) have been used
to study the vibrational and electronic properties of this
system. The Kroning~Penney model has been extensively used to
interpret the phenomenology. Such a model may be adequate
when the layer thickness is so large that regions with bulk
properties of each semiconductor exist. However, the
theoretical analysis is more difficult in those systems

where ultra-thin layers form the SL. Fortunately, in such
cases the experiments have been performed in samples where

x = 1 (van der Ziel and Gossard 1978, Barker Jr.et al.1978,
Merlin et al1.1980, Colvard et al.1980). This makes'possible -
a calculation of the properties of these (GaAs)m—(AlAs)n SL's

where m and n are the number of layers of each semiconductor
in a period of the crystal. Some efforts (Caruthers and
Lin ‘Chung 1978, Osbourn and Smith 1979, Schulman and McGill,
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1979, 1981, Andreoni and Car 1980, Schulman and Chang 1981)
have been made to study such systems by means of model
hamiltonians. However, to our knowledge, just only one self-
consistent calculation (Pickett et al.1978) has been carried
out for (110) oriented GaAs-AlAs SL's. This implies hetero-
polar interfaces with properties essentially different to the
homopolar ones of the experimental samples which have been
grown in the (001) direction. In this project, we have
analysed several SL's with polar interfaces, both (001) and
(111) by means of a self-consistent calculation of their
electronic and structural properties. Besides the electronic
self-consistency, similar to the one obtained in the
ccmputations published for other interfaces as (GaAs-AlAs)
(110) (Pickett et al.1978), (ImAs-GaSb) (100) (Ihm et al.1979)
and (Ge-GaAs) (Kunc and Martin 1981), we extend the self-
consistency to the ions which are free to move in order to
reach their equilibrium positions. The method is a minimization
of the total energy in terms of a localized basis which makes
easier its comparison with calculations where a tight-binding
model hamiltonian is used. Since the experiments are usually
performed in (001) SL's , we will devote more attention to
this case. In particular, we will analyze several systems with
different layer thickness in order to see when the SL can be
considered as a junction of the two semiconductors or as a

completely new crystal.

I.2. SELF-CONSISTENCY. LOCAL DENSITY FORMALISM

I.2.1. The method

We use a methad which has given satisfactory results for
other problems (Tejedor and Vergés 1979, Vergés and Tejedor i
1979a, 1979b, S&nchez-Dehesa et al.1981a, 1981b, 1981c). In
order to describe the electronic structure of the crystal, we
use a Wannier functions (WIF) representation (Kohn 1973). This
localized basis presents an important advantage in our case
of fully occupied bands. By means of a unitary transformation
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between the eigenstates w:(;) and the WF am(f—ﬁ) (where the

index m sums over the valence bands), both the charge density,
p(?), and the kinetic energy, T, can be written in terms of
the WF as follows (Vergés and Tejedor 1979%a, 1979b):

VB BZ #=x 2 . VB . N
b =2 [ vh s = 2] %a;(r—ﬁ)am(r—ﬁ) (I.1)
m ok m
VB BZ 2 . ‘
v-2) ] G |-E] @ -
m (1.2)
VB 2 N
=2 ] ]<apER -] a @0
m R

where the sum in K runs over the first Brillouin zone, whereas
the sum in R runs over all the lattice positions. Accordingly,
within a local approximation, the total energy of the system
can be expressed as a function of the valence WF and an ionic
pseudopotential, Vi(;)' Thus, the energy can be written as

E,,=E_+ E ' (1.3)

where Ee takes account of the purely electrostatic interaction
of a set of ionic pseudopotentials, all embedded in a
compensating uniform negative background (the zero Fourier
component of p), while all the other contributions are

included in the band-structure term E The electrostatic

, bs"
term is split as usual (Vergés and Tejedor 1979b) into two

parts: (i) the Ewald energy E containing the interaction of

EW’
a set of point ions with the electronic background, and (ii)
the correction coming from the spatial dependence of the ionic
pseudopotential vi(;): )
Za

° ¢ 81 o, -»> > Z
E, = Eg, + %;{E[dr[vil(rh =) + :{]dr[v:l(r)+ ‘ES]} p(T.4)

where the sums in 1 run over the types of anions and cations
in the supercell. In eq.(I.4) p is the mean electronic charge
" and za and zc are the ionic charges, i.e. 3 and 5 in our case.




The Ewald energy is computed by standard methods (Harrison
1966, Sanchez-Dehesa 1982) and is given by

: N, gt 20
-> -> * ->
+ 47 E [Nazasz(g)+NchSc(g)] [Nazasa(g)ﬂqczcsc(g)] *
N® ko o2
2 1 2
* exp(-g~ /40a) |1~ Vi exp(-g“/4a) ' (1.5)

where Na and Nc are the numbers ¢f anions and cations in the
supercell with volume 2, and Ni = Na+Nc‘ The structure factor
is defined-as usual:

2]

sj(tg’) = =17 e'xp(-ic}-(»’j) , (I.6)

J vy

J

where 3j are the positions of the anions and cations (j=1,2},
respectively, within the supercell. In eq.(I.5) several terms
coming from sums in real space do not appear because we take
the parameter o high enough to guarantee their cancellation.
The actual value in our computation is o = 1.2 a.u., which
gives a fast convergence in the sums involved in eq.(I.5).

The band structure energy per ion has the expression

ézpa

v s V2 ->
Eps = l£ % 2<hm(r-§)l-7—lam(r-§)) +

+ [aEp (Bre, [o(B)] + [dEV (D) [0 (E)-p] +

v, (¥) _
+ fat B [p(a-p]} , 1.7

where NT is the total number of ions in the crystal. The four
contributions to Ebs are the kinetic, T, the exchange and

correlation, Exc’ the ion-electron, E and the Hartree, E

I’ H'
energies respectively. The last two terms do not contain the
zero Fourier component of p, which is included in Ee. In order
to elude the cumbersome spatial integrals in eq.(I.7), the

evaluation of Ebs will be obtained in reciprocal space as will




be detailed below (Vergés and Tejedor 1979b).

Once the total energy is written in terms of the WF's,
a self-consistent solution is obtained by a minimization of
that total energy as a function of a set of variational
parameters included in a set of trial WF's. The whole scheme
to get trial WF's from localized functions was provosed by
Kohn (1973) and it is simple enough to allow the calculation
of different crystal properties (Tejedor and Vergés 1979,
Vergés and Tejedor 197%a,b, S&nchez-Dehesa et al,1981la,b,c).
In particular, it has been used to analyze stacking faults in
silicon (S&nchez-Dehesa et al.1981b) by a model where a
ficticious SL is used. Satisfactory results were obtained, so
that we will follow here the same procedure and only & few
technical points need more attention. The whole procedure is
sketched in the following diagram:

Choice of a set of
variational parameters 8

Self-consistent
WF  a_(Z,8)

Calculation of T P Variation of the
and p from the WF's & parameters B
A
|
Calculation of
> = .
Epg = BptEyg+tTHE o
Structural B NS\\\\\\\;
Calculation of
parameters > o ———2 75 E,, a minimum?
and ionic Ep = Ebs+Ee T ——
YES . .
pseudopotential



The pfocedure begins with a set of sp3 Slater type
orbitals (STO) centred at the positions where ionic pseudo-
-potentials are placed to describe the effect of the nuclei
and core electrons. In order to have a good starting point
for the SL calculation, we have previously computed the WF
and lattice constant for GaAs and AlAs perfect semiconductors
in zincblende structure. We apply our method with the ionic
pseudopotentials to be used later on for the (110) GaAs-AlAs
superlattice (Pickett et al.1978), taking into account that
the pseusopotential must be normalized to the volume of the
unit cell, so that it must be adequately varied when the
introduction of ionic relaxations changes that volume. The
parameters of the STO involved in the valence WF's z2nd the
lattice constants are the results we are interested in,
because this information is required as a starting point in
the SL calculation. Moreover, the value of the lattice
constant is a test of the correctness of our approach.

Table I.1 gives the different contributions to the total
energy of the GaAs zincblende crystals as a function of the
lattice constant. By using these results we have obtained
5.556 A and 5.544 & for the lattice parameters of AlAs and
GaAs respectively, when the necessary sums (Tejedor and Ver-
gés 1979, Vergés and Tejedor 1979b) running over the
reciprocal lattice vectors contain only the terms corresponding
to |g| < 87/a. The agreement with the experimental values
(Weast 1980), 5.660 X and 5.653 A respectively, improves when
‘more a-vectors are included, but in the SL case that means a
numerical task beyond our possibilities, so that we take

that maximum value of |§[ in our calculations. As a different
test of our results we present in Table I.2 the Fourier
componenteg, V(§), of the total self-consistent potential (Te--
jedor and Vergés 1979) with origin midway between ions:

> A
v = = fr {VSCOS("q'fr') - iVAsin(a':)} ,

+ _ a _ : _ -
where 1t = §(1,1,1), VS = 2(vc+va) and Va = 2(Vc Va). The

agreement with other theoretical estimations supports the
adequacy of our calculation (Caruthers and Lin Chung 1978,
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Walter and Cohen 1969, Stukel and Euwema 1969). The other
result we need is the valence WF. They are built up from trial
functions for each bond given by

f;i(E) = sinkovi(;) + cosx¢3i(§- 230 (1.8)
where ¢3.(;) is a sp3 Slater-type orbital (STO) centered at
one ion &nd pointing along the bond direction labelled by 3i'
Besides the variational parameter A, which gives the relative
weight of each one of the two sp3 orbitals, other parameters
varying in the minimization are the exponents of the STO.

Table I.3 shows our results for all those variational

TABLE I.3.- Variational parameters obtained by minimizing the
total energy of GaAs and AlAs described in a
zincblende (ZNB) and SL framework respectively.

The STO of Ga and As have the functional form
corresponding to states of the fourth atomic shell,
and the orbitals of Al the form corresponding to
the third atomic shell.

GaAs Alas
ZNB SL ZNB SL

A 1.0397 1.0462 1.0139 1.0153
Bhs 2.4754 2.4779 2.4705 2.4744
B4p 1.6885 1.6910 1.7051 1.7048
C
Bas, 3s 2.2764 2.2701 1.5588 1.4890
C
Bep, 3p 1.4912 1.4937 1.0384 1.0351

parameters for AlAs and GaAs with zincblende structure and
the calculated lattice constant given above.
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Since these results will be used later on in our
computations of SL, it .is convenient to check them for perfect
crystals described in the SL framework. To this end, we have
considered a (001) type SL, and introduced the same condition
|g] < 8n/a given above, which amounts to using 129
reciprocal vectors. In Table I.3 the variational parameters
obtained for this case are compared with the ones obtained in
the zincblende structure. The agreement can be’considered
satisfactory. As far as the contributions to the total energy
are concerned, we get results which differ less than 10_4 a.u.
from the ones given in Table I.l1 for the calculation in
zincblende structure. All these results seem to support that
we can use confidently the parameters obtained in a zincblende
structure for different types of SL's.

Once the perfect crystal has been analyzed, the results
so obtained are used to start the SL calculation. The ions
are placed at their ideal positions in a perfect SL with a
lattice constant which is the average of the two constants
obtained above for each zincblende crystal. With this choice
no missmatch of the two lattices is allowed, which is a good
approach because 0f the very similar parameters of these
semiconductors. For this lattice constant, the total energy is
self-consistently computed. The calculation is repeated for
several lattice constants around that initial value, so that
a more precise minimization is achieved. In a final step the
process is completed by allowing ionic relaxation at the
interfaces, a feature never previously calculated for these
SL's. Each one of the necessary steps is fulfilled in the
following way. The valence WF's of the superlattice are
variationaly computed with the same procedure from a set of

linear combinations of sp3

STO. Now the symmetry along the
superlattice direction has been broken so that both the
exponents of the orbitals and the mixture coefficients can be
different for each bond. This implies many variational
parameters and consequently a rather cumbersome numerical
task. Therefore we adopt the approach which gave us excellent
results in the case of the stacking fault of silicon (S&nchez-

Dehesa et al.1981b). Just the parameters of the atoms at the
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interfaces are treated variationaly, fixing those correspon-
ding to the inner layers to their bulk values previously
calculated at the zincblende structure. In order to test the
results of this enormously simplified approach we have made
some particular calculations by also miunimizing with respect
to the parameters of inner layers. The total energy decreases
so little with this degree of freedom in which no significant
variation appears, that this simplified approach can be
considered as rather effective. In this scheme, the computation
starts by taking, for the interface bonds, the bulk
parameters as the initial values for the minimization
procedure.

As far as other technical points are concerned, they
are treated as detailed in S&nchez-Dehesa et al. (1981b), in
particular the special points scheme used to perform integrals
in reciprocal space.

In spite of the fact that the following sections are
devoted to the analysis of different SL's, we can advance here
the general trend of the results. The main variation obtained
with the minimization corresponds to the mixture parameter 2
at the interface as well as to the coefficients, obtained in
the orthogonalization procedure, of each WF given in terms
of the bond orbitals (I.8). However, the exponents of the
STO do not vary significantly. Such a result could be expected
because something similar happens in a much more drastic
situation as that of the change from free atoms to ions
forming a crystal (Tejedor and Vergés 1979, Vergés and
Tejedor 1979%a).

I.2.2, Results

I.2.2.1. (001) Superlatiices

In this section we discuss the results obtained when
the method avobe described is applied to SL oriented along
the (001) direction, which are those of experimental interest.
We concentrate upon (GaAs)m-(AlAs)m systems with m = 1,2, 3,
in order to analyze the effect of layer thickness on the

.
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properties of the SL. Experimental information (Barker Jr.
et al.1978) for such very thin SL's indicates that these
crystals must be considered as three-dimensiocnal (3D) with
properties rather different to those of thicker SL's, where
two-dimensional (2D) confination appears. Our results allow
to analyze how the transition in the 3D-2D behaviour occurs
and, in particular, the way in which transfer of charge and
ionic relaxations takes place at the interface of thicker SL
and heterojunctions.

Figures I.1, I.2 and I.3 show the supercell used in the
calculation for the cases m = 1, 2 and 3, respectively.
Straight lines joining the ions represent the bonds (eq.(I.8))
from which a set of trial WF's is built up as described
above. As in many other systems {Tejedor and Vergés 1979,
Vergés and Tejedor 1979a,b, S&nchez-Dehesa et al.l198la,b,c),
our results show that each valence WF can be asscciated with
one of those bonds because its weight in the neighbouring
bonds decreases very quickly. Therefore, we refer hereafter
sometimes to a particular valence WF as a particular bond. 3as
mentioned above, we start by self-consistently solving the
problem of a perfect (without ionic relaxations at the
interface) SL in order to determine the size of the supercell.
This can be represented by the bond length 1m in each case
(Gahs) -(AlAs) . We get 1, = 2.404 &, 1, =2.370 & and

= 2.401 & and

GaAs
= 2.406 & obtained in zincblende structure. This can

13 = 2.380 ﬁ, which are very close to 1
1AlAs
.be taken as a satisfactory test of the consistency of our SL
calculations. Once the bond length has been determined for
the inner ions, the distance between ionic layers at the
interface is allowed to vary looking for equilibrium
positions. Such step is made only for m = 3 because it does
not mean a new variational freedom in the other two cases
~where all the ions can be considered as being at an interface.
For m = 3 we get that both the distances Al-As and Ga-As at
the interface increase in a 2.5 % of their bulk value. This
implies that the period of (GaAs)3(AlAs)3 SL's is 1.008 times
that of the ideal one. Let us now discuss the values of the
variational parameters at this minimum of the total energy.
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FIGURE I.1.- Supercell used in the calculation of a
(GaAs)l-(AlAs)1 SL oriented along the (001)
direction. Heavy lines represent the bonds
from which WF's are built up. Parameter a
is the lattice constant of the corresponding
zincblende crystal.




FIGURE I.2.-

3

pAl
oAs
20Ga

Supercell used in the calculation of a
(GaAs) ,~(AlAs), SL oriented along the (001)
direction. Heavy lines represent the bonds
from which WFP's are built up. Parameter a

is the lattice constant of the corresponding
zincblende crystal.
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FIGURE I.3r Supercell used in the calculation of a
(GaAs)3-AlAs)3 SL oriented along the (001)
direction. Heavy lines represent the bonds from
which WF's are built up. Parameter a is the
lattice constant of the corresponding crystal.




No significant variations exist for the exponents of the STO
with respect to the bulk values. The main changes at the
interface are those of the mixture parameters A appearing in
eq. (I.8). Table I.4 gives our results for such parameter for
the three SL's under study. The comparison between bulk and
interface values shows that the combination between Ga and

1e

As orbitals does not change significantly. The main variation

is that of the mixture of Al and As orbitals. éﬁe connection

TABLE I.4.~ Values of the mixture parameter A for bonds in
the bulk and at the interface for (001)-type

superlattices. AA is for the combination in Al-As

bonds, and XG for Ga~As bonds (eq.(I.8)).

Bulk Interface
A, = 1.005

m=1 — A
AG = 1,043
A, = 1,014 A, = 0.991

m= 2 A A
AG = 1.042 AG = 1,040
A, = 1,014 A, = 0.974

m= 3 A A
AG = 1,042 AG = 1.046

of these results with physical properties is far from
straightforward because the main change produced in going

from perfect crystals to SL is not in the orbitals shape but

in the way in which these orbitals combine to give the WF's
of the system. In other words, the effect of the SL is
essentially contained in the orthogonalization procedure.
Therefore it is better to directly analyze physical results




as the chargé density or the potential éelf-consistently
calculated for the SL., Figure I.4 shows the potential
average parallel to the interface plane for (GaAs)3-(AlAs)3.
The mean value of V(z) is 6 meV higher in the GaAs region
than in the AlAs one. The three different contributions to
this step are: the ionic potential Vi, the Hartree potential

v and the exchange potential Vx

H’ c -
A\'zi = \'ri(c;aAs) - i‘ri(AlAs) = -0.0232 eV

ATIH = \'/H(GaAs) - \‘JH (Alas) = 0.02.84 ev

M-;xc = x?xc(GaAs) - V o(Alas) = 0.0009 eV .

From these values we can conclude that in the self-
consistent process the differences in the ionic potentials
are screened by the electrons so that a barrier in the
opposite direction results.

Similar results are obtained here for m = 2 and by
Pickett et al.(1978) for the (110) oriented SL. The reason of
~ this induced potential barrier is easily understood in terms
of the charge transfer. In order to visualize this transfer,
Figures I.5 and I.6 show, for m = 2 and 3 respectively, the
difference between the SL charge density and the charge of
each perfect crystal placed at the adequate spatial region.
In both cases, a net charge is transferred from AlAs to Gals.
Such a result could be expected from the Pauling's scale of
electronegativities (Pauling 1972}, where Ga has a higher
value than Al, so that the latter tends to transfer electrons
to the former. This effect is mainly concentrated at the
interface and it has a clear implication in the interaction
between localized orbitals. In our scheme we work with the
interaction between WF's ai(;) given by

ey (R = <a; @) |nlayE-R> (1.9)

where H is the self-consistent Hamiltonian, ﬁ a lattice vector
and i,j label two WF's of the set associated to the valence
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FIGURE I.5.~ Charge transfer in electrons per ion
selfconsistently computed for (GaAs)z-(AlAs)2
SL in the (001) direction. Layers of ions are
" represented by @ for As, A for Al and 0 for Ga.
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bands (Tejedor and Vergés 1979, S&nchez-Dehesa et al.1981b).
In Tables I.5 and I.6 we show some of the interactions for
m = 1 and 2 respectively. In order to compare with simple

TABLE I.5.- Interaction sij(§=0) (in a.u.) for the (GaAs)l—
(AlAs)1 SL in the (001) direction. Subindices G
and A refer to interactions in GaAs and AlAs,
respectively. The labels i,j correspond to the

ones in Figure I.1.

Neighbourhood €54 = <a; [H[a >

between bonds J J

Zero eGG(l,l) = 0.1790
€pa(3,3) = 0.1648

First neighbours eGG(l,Z) = -0.05(8
eﬁhi3,4) = ~0,0688
aGA(l,B) = ~-0.0663

Second parallel eGA(l,S) = 0.0144

neighbours

non parallel eGA(l,G) = -0.0018

eGA(1,8) = -0.0048

21

tight-binding models, it is sufficient to look at the inter-
action of a WF with itself because a WF essentially contains

atomic orbitals of two first neighbours. Table I.7 shows this

magnitude for different WF's in the (GaAs)3—(AlAs)3 SL. The
conclusion drawn from these results is that the self-
1nter§ction of Ga—-As bonds at the interface tends to be an
average of the two bulk values in agreement with a simple
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TABLE I.6.- Interactions eij(§=0) (in a.u.) for the
(GaAs)z-(AlAs)2 SL in the (001) direction.

Subindices G and A refer to interactions in

GaAs and AlAs respectively. The labels i,j

correspond to the ones in Figure 2. We have

artificially labelled the centre of each semi-

cdnductor as bulk zone.

Neighbourhood
between bonds

Interface zone

Bulk zone

Zero

First

neighbours

Second neighbours

parallel

non
parallel

eGG(l,l)

sAA(3,3)
eGG(l,Z)

eAA(3,4)

sGA(l,B)

eGG(l,S)

eGA(11,15) = 0.0149

eAG(3,7)

= 0.1798

]

0.1594

= -0.0580

~0.0666

-0.0703

= 0.0135

= 0.0125

eAA(9,13) = 0.0137

cGG(l,G)

ega(12,15) = -0.0014

eag(9:6)

eapn(9,14) = -0.0026

= -~0.0020

= ~0.0034

EGG(S,S) = 0.1821
sAA(13,13) = 0.1662
EGG(S,G) = -0..622
EAA(13,14) = -0.0654

[P
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tight-binding model proposed by Schulman and McGill {1979).
However, this is not the case of the self-interaction of the
Al-As bond at the interface, which is significantly lower
than the bulk values. This clear difference with the simple
tight-binding model is associated to the change of the
mixture parameter A mentioned above and shown in Table I.4.
Let us finally discuss our results for the band
structure. Once the self~consistent potential has been
obtained, the valence spectrum is computed by diagonalizing
the Hamiltonian represented in a basis of Bloch sums of WF's
(Tejedor and Vergés 1979). Then, the calculation is rather
simple because the size of the matrix is just 8mx8m. Figures
I.7 and 1.8 show the valence band structure for m = 1 and 2,
respectively. Table I.8 gives the eigenstates at the valence
band edges for the three SL's we are concerned with. The main
result is the well known (Caruthers and Lin Chung 1978,
Schulman and McGill 1979, Andreoni and Car 1980) splitting of
some meV of the upper valence states at I'. As it was obtained
by Pickett et al. (1978) in their self-consistent calculation
for (110) GaAs-AlAs SL's, we get a non degenerate upper state,
but since the width of our SL is too small, such a state is
not concentrated at the GaAs region. Therefore, it cannot be
considered as a two dimensional SL state as the ones
experimentally observed in thicker SL's (Dingle et al.1974,
1975, Manuel et al.l1976, Sai~Halasz et al.1978). In order to
clarify the meaning of these band structures we present in
Table I.9 the levels at the I' point for perfect crystals
treated in the SL framework. A magnitude which gives the trend
of the band structure as a function of the SL thickness is the
valence band width. Table I.8 shows an increase of this width
as m increases. As shown in Table I.10, we also obtain a
similar increase for the total energy per atom, a magnitude
that, to our knowledge, is not possible to compare with any
experimental information. T

1.2.2.2., (111) Supenlattices

No experimental or theoretical information exists, to
our knowledge, for SL's grown in this direction. We have




FIGURE I.7.- Band structure for the VB of the (GaAs)l-(AlAs)l
SL in the. (001) direction. The origin of
energies is taken at the mean potential of the
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(000) (100) (%% 0) (000)

FIGURE I.8.~ Band structure for the VB of the
(GaAs) ,-(AlAs), SL in the (001) direction.
The origin of energies is taken at the mean
potential of the SL.
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TABLE I.10.- Contributions to the total energy (in a.u.) for
the (GaAs)m-(AlAs)m SL in the (001) direction
for different values of m.

m=1 m= 2 m= 3
EI -0.9727 -0.9611 -0.9611
Ey 0.2566 0.2571 0.2567
T 1.3223 1.3223 1.3229
Exc -1.1879 -1.1876 -1.1877
E s -0.5817 -0.5693 -0.5682
Eg -3.4961 -3.4961 -3.4961
En -4.0778 -4.0654 ~4.0643

applied our method to such a system because, together with
the (001) SL above discussed, they contain the two common
polar interfaces. Moreover, we will use the results here
obtained to analyze, in the next section, the valence band
discontinuities at semiconductor heterojunctions.

Figure I.9 shows the supercell used to calculate the
properties of a (GaAs)3-(AlAs)3 (111) SL with the same
approach that the above discussed for the (001) case. Again
we start with the ions placed at the ideal bulk positions and
minimize the energy as a function of the bond length, 1. We
get 1 = 2,403 ﬁ, which is practically the average of lGaAS =
2.401 & and 1AlAs = 2.406 ﬁ; previously obtained in
section I.2.1 for perfect zincblende crystals. Once this bulk

bond length has been determined, the interface ions are allowed.

to relax looking for a deeper minimum of the energy. In
contrast with the (001) SL where a net relaxation was obtained,
now the distance between Al and As interface planes increases
in a 0.5 %, but the distance between Ga and As interface
planes decreases in the same amount. In other words, no
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i -~ S

FIGURE I.9.- Supercell used in the calculation of the
' structure of a (GaAs)a-(AlAs)3 SL oriented
along the (111) direction. Heavy lines

represent the bonds (eq.(I.8)) from which WF's '
are built up.
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relaxation appears at this interface where jus% the As plane
slightly moves towards .the Ga plane but the Al-CGa distance
does not change. In spite of this difference, our results for
the variational parameters are rather similar in both systems.
Again the only change at the (111) interface is that the
mixture parameter A for Al-As bond significantly decreases
with respect to bulk values as shown in Table I:ll. This
similitude implies that charge transfer and differences of
mean potentials appear in this (111) SL in the same way as in
the (001) one. So we have

AV

V(GaAs) - V(Alas) = AVi + AVH + Ach =

-0.022 + 0.029 + 0.001 (in eV).

TABLE I.l1l1l.- Values of the mixture parameter A (eq.(8)) for
bonds in the bulk and at the interface (GaAs)3-
(AlAs)3 SL in the (111) direction. A, is for the

A
combination in AlAs bonds and AG for Ga—-As bonds.
Bulk Interface
A AA = 1,015 AA = 0,999
(GaAs)3-(AlAs)3
(111) . XG = 1,046 AG = 1.048

The charge density that AlAs transfer to GaAs implies that
the mean value of V(z) at GaAs is 8 meV higher than the mean
value of V(z) at AlAs. Since a figure of V(z) or the average
transfer charge would be very similar to Figure I.6, we give
here a different picture of the same points by showing in
Figure I.10 the contour plots of the total charge density
around the interface.

All these results bring to the conclusion that (001)
and (111) SL's are very similar, the main difference being




FIGURE I.10.- Total charge density at the interface of a
(GaAs)3— (AlAs)3 SL oriented along the (111)
direction. Units are in electrons per ion.
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that the former shows ionic relaxation at the interface and
the latter does not. One more difference appears when one
analyzes the spectrum of this (111) SL given in Table I.12.

TABLE I.12.- Band edges at T of the valence band of perfect
crystals and (GaAs)3—(AlAs)3 SL all of them in

the (111) direction. Energies in eV are referred
to the mean potential for each SL.

(GaAs)s-(AlAs)0 (GaAs)o—(AlAs)6 (GaAs)3—(AlAs)3
10.040(2) 9,760(2) 10.065(2)
10.036 9.751 9.927

9,665(2) 9,394 (2) 9.643(2)
9,652(2) 9.393(2) 9.405(2)
-2.253 . -2.623 -2.677

Now the upper state at T, placed 10.07 eV higher than the mean
value of the SL potential, is doubly degenerated and is
localized at the GaAs region. Since this type of localized
states has been experimentally observed in thicker (001) SL,
our result suggests that the transition from 3D to 2D
behaviour appears before in (111) SL's than in (001) ones,
where we have not obtained states localized in the Gaas
region.

I.2.3. Discussion
We have used a self-consistent localized scheme in terms

of WF's to analyze the structural and electronic properties
of several GaAs-AlAs SL's grown in the (001) and (111)
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directions. From the structural point of view, we have found
that those SL's with polar interfaces differ each other in
that the (001) ones present ionic relaxation while the (111)
ones do not. Nevertheless, this difference is not very
important because the relaxation around the As ions of the
(001) interface just affects to the first Ga and Al planes

on each side both increasing in a 2.5 % their distance to the
anion. Such small relaxation has no significant effect on the
electronic properties. In any case, this relaxation is a
purely interface effect so that it seems quite natural to
consider that the displacements here obtained can be valid
for thicker SL and heterojunctions.

Since we work with a localized scheme the influence of
an interface does not enter too much into the deep layers of
each semiconductor. Therefore (GaAs)m—(AlAs)m SL's, for both
orientations, show bulk-like behaviour in the central layer
of each semiconductor for m = 3. For instance, our results
for these m = 3 cases allow to see how AlAs transfers a
small amount of electronic charge to GaAs, so that a
potential barrier between both semiconductors appears. At
this point, it is very tempting to use this barrier A between
mean potentials to estimate the shift of the electronic
structure of GaAs with respect to AlAs for thicker SL's or
even an heterojunction of semiinfinite semiconductors. The
best magnitude to measure this shift is the difference AEV
between the top of the AlAs and GaAs valence bands, which
requires the position of that level EV for both bulk semi-
conductors. In order to be consistent with our approach, we
have computed that level in a SL framework for (E;'aAs)G(AlAs)o
and (GaAs)o(AlAs)6 for both orientations. We have obtained

ag (001) _ ,(001) _ ,GaAs(001) _ LAlAs(001) _ | ,o> oy
v v v
(1D o (1D gGans(111) | gAAS(LLL) _ o 505 oy

which are very similar each other. The unique experimental
information for this magnitude is obtained as a extrapolation
for x » 0 of this shift measured in GaAs-Ga,Al,_, thick SL's



35

oriented along the (001) direction (Dingle et al.1975). The
experimental result is AEV = (0.15 = 0.03)E;, where Er is

the direct gap at the T point of the SL. In this work we do
not conzentrate on conduction bands which are required to
know Eg, but it is straightforward to use the self-consistent
Hamiltonian we have obtained to compute such magnitude. We
have got AE_ = 0.135 E; which compares fairly well with the
above mentioned experimental result. This suggests the
possibility of an analysis of thick SL or heterojunctions by
using the information obtained for ultrathin SL.

In spite of the similarity of both (001) and (111) SL's
with m = 3, the electronic spectrum shows a significant
difference. In the (111) SL the upper valence state is
spatially localized on the GaAs region as it has been
observed experimentally for thicker SL's. However, in the
(001) SL's such localization does not exist in our results.

X.3. ELECTRONIC CONDUCTION BANDS

I.3.1. Simple model

Once we have analyzed in detail the VB structure of
narrow SL's, we pay some attention to the conduction band
(CB) structure. We concentrate on (GaAs)4—(A1As)4 SL's along
the (001) direction because they have been studied
experimentally (Barker Jr.et al.1978, Merlin et al.1980,
Colvard et al.1980). Since the analysis of the CB is rather
more complicated than the one of the VB, we use a simple
Hamiltonian which can be justified from the self-consistent
calculations discussed above. .

We use a tight=binding model (Schulman and McGill 1979)
with four orbitals per atom. The tight-binding parameters
for perfect semiconductors are fitted to bulk band structureg_-—~»
(Osbourn and Smith 1979, Schulman and McGill 1979). So the
tight-binding matrix for the superlattice can be straight-
forwardly obtained. Its form is shown in Figure I.1ll. It is
organized in 8x8 blocks representing the integrals between
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FIGURE I.1ll.- Superlattice tight-binding matrix. Each block

represents an 8x8 submatrix. The upper right-
hand corner block, B8, links AlAs and GaAs
slabs. The matrix is organized in such a way
that each block corresponds to matrix elements
between orbitals centered on atoms in the same
(A and a) or adjacent (B, b or B) SL layers.,
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atomic orbitals. Each layer contains a single anion and caticn
per unit cell. We just retain interaction up to second
neighbours so that there are only two types of blocks. The
corner blocks contain the integrals between adjacent layers,
where each layer is in an adjacent slab. These blocks are

the typical ones connected with the SL and they contain the
phase factor exp(ikzd), where d is the slab width and k, is
the component eof the k vector perpendicular to the interface.
In this way the total size of the matrix is in our case
16mxlém = 64x64.

The GaAs and AlAs parts of the SL share common As ions
at the interface. Therefore, there is no problem in
determining the matrix elements for first-neighbours. They
are taken from the bulk values. However, the bulk fitting
does not provide parameters for second-neighbours at this
position. Instead, a simple average of As to As, Al to Al and
Ga to Ga parameters has been used.

The direct diagonalization of this matrix gives us the

whole band structure we are interested in,
I.3.2. Results

With this model we have computed the band structure
along the f-space direction perpendicular to the interfaces
in order to estimate the effective masses of the SL states.
Table I.13 shows the energies for different values of
k = Zw/d(0,0,kz) obtained with the tight-~binding parameters
given by Osbourn and Smith (1979). All the SL states given
in this table have their eigenfunctions located at the GaAs
spatial region, so that, as is well known, this is a SL of
type I, i.e. where electrons and holes are in the same region:
From these results we can estimate the effective masses
(at ') of these bonds. We get for the electron, heavy hole
and light hole, m¥ = 0.69, m* = 0.43 and m}, = 0.19, o
respectively. They are rather different from the ones given
by a Kronig-Penney model: m; = 0.073, m7 = 0.513 and
th = 0.08, which have been used to analyze the experiments
of light-scattering (Colvard et al.1980). However, the most
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TABLE I.13.- Eigenvalues (in eV) of the SL states in a
(GaAs)4--(AlAs)4 SL along the (001) direction.

(4a/11)kz
0 0.4 0.6 1

2.1942 2.1931 2.1921 2.1910
CB -

1.9408 1.9578 1.9735 1.9917

0.00264 -0.02484 -0.05764 -0.12881
VB 0.00260 ~0.02488 -0.05764 -0.12885
»

-0.00096 ~0.06335 -0.13735 -0.20633

important result is that we get m* = 10.6 for the effective
mass of the second conduction band. The reason is that this
very flat band comes from the lowest CB at X in GaAs. This

is due to the folding of the Brillouin zone. Since that

state has a very high longitudinal mass in perfect GaAs, this
fact appears, and even is increased, for the second
conduction band of the SL. We think that this result can be
of great significance for resonance phenomena as the ones
appearing at the Raman scattering experiment discussed by
Colvard et al. (1980).




39

CHAPTER Il. METAL-SEMICONDUCTOR JUNCTIONS

II.1. INTRODUCTION

The mechanism of Schottky-barrier formation has been
the subject of many different interpretations (Rhoderick
1978). In the last few years, new experimental information
has been obtained which points to the effect of the metal-
semiconductor reactivity on the barrier formation (Brillson
1978, Andrews and Phillips 1975, Ottaviani et al.1980,
Williams et al.1978, Brillson et al.1981). In particular,
the abruptness of the junction interface seems to be a
function of the metal~semiconductor bonding, with the
consequent effect on the barrier height (Brillson et al.
1981) . Very recent experimental evidence has shown that
metal-semiconductor interdiffusion is by no means a rule and
that some structural effects, not completely understood, may
inhibit interdiffusion, allowing the existence of well-
defined abrupt interfaces. Silver on Si and InP (McKinley et
al.1979, “"illiams et al.1977), as well as some silicides on